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In this paper we have studied the binomial states and also the excited binomial states
defined in terms of the Fock-basis vectors of the pseudoharmonic oscillator. We have demon-
strated that outside of the behavior at the harmonic limit, when the binomial states lead
to the coherent states of the one dimensional harmonic oscillator, these states have in fact
all the characteristics of the coherent states defined on the complex unit disk. We have
calculated the expectation values and the Mandel parameter (as well as their thermal ana-
logue) which give us information on their statistical behavior. All the obtained relations
tend, at the harmonic limit, to the corresponding relations for the one dimensional harmonic
oscillator.
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I. INTRODUCTION

The coherent states (CSs), |z;λ⟩, like the number states |n;λ⟩ play an important role
in quantum optics. (See, e.g., [1] and the references therein.)

Generally a CS has the following structure:

|z, λ⟩ = 1√
N (|z|2;λ)

M∑
n=0

zn√
ρ(n;λ)

|n, λ⟩, (1)

where z = |z| exp(iφ) is a complex variable labeling the CS, ρ(n;λ) are positive quantities
depending on the energy eigenvalues and are called the structure constants, λ is a parameter
which characterizes the CSs (e.g., the Bargmann index, the quantum rotational number J ,
and so on) and M is a positive integer, M ≤ ∞.

There are many families of CSs depending of the different choice of structure constants
ρ(n;λ). The only condition is that the normalized function N (M)(|z|;λ) must be finite:

N (M)
(
|z|2;λ

)
≡

M∑
n=0

(|z|2)n

ρ(n;λ)
< ∞. (2)

∗Electronic address: nicolina.pop@upt.ro

http://PSROC.phys.ntu.edu.tw/cjp 738 c⃝ 2014 THE PHYSICAL SOCIETY
OF THE REPUBLIC OF CHINA
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The binomial states (BSs), which were introduced by Stoler et al. [1], are defined as a linear
superposition of finite number states (NSs) |n;λ⟩ in an (M + 1)-dimensional subspace of
the infinite dimensional Hilbert space of the Fock-vectors:

|z,M ;λ; 0⟩ =
M∑
n=0

B(M ;0)
n zn(1− |z|2)

M−n
2 |n;λ⟩, B(M ;0)

n ≡

√(
M
n

)
. (3)

Here the complex variable is defined in the unit disk D = {z ∈ C, z < 1}. If z becomes
a real number, then it plays the role of probability. With the orthogonality relation for
the Fock-vector’s basis ⟨n;λ|n′;λ⟩ = δnn′ , and using Newton’s binomial relation, we can
normalize the BSs to unity:

⟨z,M ;λ; 0|z,M ;λ; 0⟩ =
M∑
n=0

(
M
n

)(
|z|2
)n

(1− |z|2)M−n = 1. (4)

The name “binomial states” comes from the fact that the corresponding photon distribution
is simply the binomial distribution with the probability |z|2:

P (M ;0)
n (|z|2) ≡ |⟨n;λ|z,M ;λ; 0⟩|2 =

(
M
n

)(
|z|2
)n

(1− |z|2)M−n. (5)

As we can see, the Fock-basis space for BSs covers only a subspace of (M+1)-dimension
of the whole infinite-dimensional Fock-space. In addition, the BSs are independent of the

Fock-vector basis |n;λ⟩ we use, i.e., the weighting functions C
(M ;0)
n (z) ≡ ⟨n;λ|z,M ;λ; 0⟩ =

B
(M ;0)
n zn

√
(1− |z|2)M−n are independent of the basis choice. But, when we will calculate

the expectation values for a concrete physical system, then the choice of the basis becomes
important.

From the above, it can be observed that the BSs are only a particular case of CSs.
In this context, we must show that BSs satisfy all the properties required for the CSs.

The aim of our paper is to examine the properties of the binomial and excited bino-
mial states built in the Fock-vector basis {|n;λ⟩, n = 0, 1, . . . ,M} of the pseudoharmonic
oscillator (PHO). The paper is organized as follows. In Sec. II we give some main elements
and concepts related to the PHO that will be needed in the next sections. In Sec. III we
build the binomial states for the PHO by repeatedly applying the raising operator K+ on
the fiducial (or reference) BS |z,M ; k; 0⟩, and we will demonstrate that these states are
indeed coherent states, satisfying all the prescriptions needed for the coherent states. In
Sec. IV we introduce, build, and examine some properties of the excited binomial states
(EBSs) for the PHO, while Sec. V is devoted to the examination of the nonclassical behavior
of these states. In Sec. VI we investigate some statistical properties of the superposition
of EBSs for the PHO with thermal light, while in the Sec. VII we examine the non-excited
limit of these states (which corresponds to m = 0) and also the harmonic limit of EBSs for
the PHO, which leads to the corresponding characteristics of the one dimensional harmonic
oscillator (HO-1D).
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II. PSEUDOHARMONIC OSCILLATOR AND THEIR ASSOCIATED
QUANTUM GROUP

In order to construct the BSs for the pseudoharmonic oscillator (PHO), let us review
some elements related to this oscillator which will be useful in the next sections. A suitable
physical system which can be correctly modeled by the PHO is the diatomic molecule, e.g.,
the effective potential of the PHO is [2, 3]

VJ(r) =
mredω

2

8
r20

(
r

r0
− r0

r

)2

+
h̄2

2mred
J(J + 1)

1

r2
, (6)

where mred and ω are, respectively, the reduced mass and the angular frequency of the
PHO, r0 is the equilibrium distance, and J = 0, 1, 2, . . . is the rotational quantum number.

We consider the Hilbert space as a functional realization of the Fock space with
basis {|n; k⟩, n = 0, 1, 2, . . .}. The number 2k = ±1,±2,±3, . . . is called the Bargmann
index, as we will see later. The PHO potential is of the central field kind, so the functions
ΨnJm(r⃗) = ⟨r⃗|n; k⟩ = RnJ(r)YJm(θ, φ) give a realization of this basis in the “coordinate”
representation, where mz is the quantum number of the operator Jz.

The Fock-basis vectors fulfill the orthogonality and completeness relations:

⟨n; k|n′; k⟩ = δnn′ ,

∞∑
n=0

|n; k⟩⟨n; k| = 1. (7)

The resolution of the Schrödinger equation for the stationary states HΨnJm(r⃗) =
EnJΨnJm(r⃗) leads to following energy spectrum for the PHO, which is linear with respect
to the vibrational quantum number n:

EnJ = h̄ω (n+ k)− mredω
2

4
r20 ≡ E0J + h̄ωn. (8)

The rotational quantum number J is “embedded” in the Bargmann index k = k(J), i.e., [3]

k =
1

2
+

1

2

√(
J +

1

2

)2

+
(mredω

2h̄
r20

)2
. (9)

The radial eigenfunctions corresponding to the stationary states are [3]

unJ(r) ≡ rRnJ(r)

=

[
mrω

h̄

n!

22k−1Γ(n+ 2k)

] 1
2 (mrω

h̄
r
)2k− 1

2

exp

[
−1

4

(mrω

h̄

)2
r2
]
L2k−1
n

[
1

2

(mrω

h̄

)2
r2
]
, (10)

where Γ(x) is Euler’s gamma function and L2k−1
n (x) is the generalized Laguerre polynomial.
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The natural dynamical group associated with the bound vibrational states of the
PHO is SU(1,1) [3], whose discrete representations are given by

K2|n; k⟩ = k(k − 1)|n; k⟩, (11)

K+|n; k⟩ =
√

(n+ 1)(n+ 2k)|n+ 1; k⟩, (12)

K−|n; k⟩ =
√

n(n+ 2k − 1)|n− 1; k⟩, (13)

whereK,K+, andK− are the Casimir, the raising, and, respectively, the lowering operators.
Here the real parameter λ from Sec. I is just the Bargmann index k. Even if the Bargmann
index k can take negative values, here we are interested only in the positive series of discrete
representations of SU(1,1).

The commutation relations of the group generators K+, K−, and K3 look like

[K3,K±] = ±K±, [K−,K+] = 2K3. (14)

We define also the self-adjoint operator N “numbering” basic elements (also called the
particle (photon or boson) number operator):

N = K3 − k, N |n; k⟩ = n|n; k⟩. (15)

In the next section we will concentrate our attention on the BSs of the PHO labeled by
points z ∈ D, defined as

|z,M ; k; 0⟩ =
M∑
n=0

B(M ;0)
n zn

(
1− |z|2

)M−n
2 |n; k⟩, (16)

i.e., on the states constructed by using M +1 Fock-vectors {|n;λ⟩, n = 0, 1, . . . ,M} for the
PHO.

III. BINOMIAL STATES FOR THE PHO

Based on the concrete oscillator case (the PHO), we will show that, even if at the
harmonic limit any BS tends to the CS of the HO-1D, the BSs behave as coherent states
even up to this limit. For this purpose, in order to highlight this statement, we must prove
that the BSs of the PHO satisfies the minimal Klauder prescriptions imposed on the CSs
(see, e.g., [4, 5]), which means that a BS must be: a continuous function in the complex
z variable, i.e., the map z ∈ C → |z,M ; k; 0⟩ ∈ L2(R) must be continuous; be normalized
but not orthogonal; fulfill the resolution of the identity operator with a positive weight
function; be temporally stable and fulfill the action identity.

The basic minimum properties of any set of states to be called a set of coherent states
(which were formulated by Klauder [4, 5]) are the following:
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Proposition 3.1: If |z,M ; k; 0⟩ is a set of BSs for the PHO, then the continuity of label-
ing requires that the norm of the difference of two BSs, i.e. ∥|z′,M ; k; 0⟩ − |z,M ; k; 0⟩∥ → 0
whenever z′ → z.

Proof 3.1: Explicitly, the norm of the difference of two BSs is∥∥|z′,M ; k; 0⟩ − |z,M ; k; 0⟩
∥∥ =

√
2
[
1− Re

(
⟨z,M ; k; 0|z′,M ; k; 0⟩

)] 1
2 . (17)

The overlap relation between two BSs is given through the scalar product:

⟨z,M ; k; 0|z′,M ; k; 0⟩ =
M∑
n=0

[
B(M ;0)

n

]2 [(
1− |z|2

) (
1− |z′|2

)]M−n
2
(
z∗z′

)n
, (18)

from which we can see that if z′ → z, then the overlap tends to unity and the continuity is
fulfilled.

Proposition 3.2: The BSs are normalized but not orthogonal.
Proof 3.2: This condition is implicitly shown from the above overlap relation, and so

the non-orthogonallity is proved.
Proposition 3.3: The BSs fulfilled the resolution of the identity operator with the

positive weight function∫
dµ

(M)
0 (z; k)|z,M ; k; 0⟩⟨z,M ; k; 0| = IM+1. (19)

Proof 3.3: Let us assume that there exists a positive integration measure dµ
(M)
0 (z; k) on

L2(R) of the following form:

dµ
(M)
0 (z; k) =

d2z

π
h
(M)
0 (|z|2; k) = dφ

2π
d(|z|2)h(M)

0 (|z|2; k), (20)

where d2z
π is the Lebesgue measure on D, and the weight function h

(M)
0 (|z|2; k) will be

determined as a positive function for |z| < 1.
After the angular integration, which leads to

2π∫
0

dφ

2π
(z∗)nzn

′
= (|z|2)nδnn′ , (21)

and using the completeness relation of the Fock vectors in an (M +1) - dimensional space,
i.e.,

M∑
n=0

|n; k⟩⟨n; k| = IM+1, (22)

we have to solve the following integral equation for the unknown weight function

h
(M)
0 (|z|2; k):

1∫
0

d(|z|2)h(M)
0 (|z|2; k)(|z|2)n(1− |z|2)M−n =

1(
M
n

) =
Γ(n+ 1)Γ(M + 1− n)

Γ(M + 1)
. (23)
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If we perform the variable change, |z|2 (1− |z|2)−1 ≡ X, we are lead to the equation

∞∫
0

dX
h
(M)
0 (X; k)

(1 +X)M+2
Xn =

Γ(n+ 1)Γ(M + 1− n)

Γ(M + 1)
. (24)

This requires a function change,

g
(M)
0 (X; k) = Γ(M + 1)

h
(M)
0 (X; k)

(1 +X)M+2
, (25)

and also the index change n = s− 1, in order to lead to the Stieltjes moment problem [5]:

∞∫
0

dXh
(M)
0 (X; k)Xs−1 = Γ(s)Γ(M + 2− s). (26)

The solution of such a problem can be expressed through Meijer’s G-functions [6, 7]:

g
(M)
0 (X; k) = G11

11

(
X

∣∣∣∣ −M − 1
0

)
= Γ(M + 2)

1

(1 +X)M+2
, (27)

so that the integration measure for the BSs becomes

dµ
(M)
0 (z; k) = (M + 1)

dφ

2π
d(|z|2), (28)

and evidently, their weight function is positive. The proof is finished.
Proposition 3.4: The BSs are temporally stable, which means that any BS always

remains a BS, during the time evolution:

e−
i
h̄
Ht|z,M ; k; 0⟩ = |z(t),M ; k; 0⟩. (29)

Proof 3.4: By using the time independent Schrödinger equation for the PHO,

H|n; k⟩ = EnJ |n; k⟩, (30)

and the expression of the energy spectrum (which is linear with respect to the vibrational
quantum number n), we obtain, successively,

e−
i
h̄
Ht|z,M ; k; 0⟩ = e−

i
h̄
E0J t

M∑
n=0

B(M ;0)
n (ze−iωt)n

(
1−

∣∣∣ze−iωt∣∣∣2)M−n
2

|n; k⟩ ≡ |z(t),M ; k; 0⟩,

(31)

with z(t) = |z| e−i(φ+ωt)ze−iωt.
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Proposition 3.5: The BSs fulfill the action identity

⟨z,M ; k; 0|H|z,M ; k; 0⟩ ≈ ω|α|2. (32)

Proof 3.5: If in the expectation (mean) value of the Hamiltonian in the BSs representation
we apply Newton’s binomial formula, finally we obtain

⟨z,M ; k; 0|H|z,M ; k; 0⟩ =
M∑
n=0

(
M
n

)(
|z|2
)n (

1− |z|2
)M−n

EnJ = E0J + h̄ωM |z|2 . (33)

Now, if we use the notation M |z|2 = |α|2 (by considering h̄ = 1), then we obtain, up to an
additional constant related with the rotational energy, the so-called action identity [5, 8].

This result establishes that the expectation value (or “lower symbol”) of the Hamil-
tonian mimics the classical relation energy-action, i.e., the real variable |α|2 = M |z|2 can
be identified with an action variable, canonical with the angular variable ω = φ̇ [5].

IV. EXCITED BINOMIAL STATES FOR THE PHO

As in the cases referring to the canonical coherent states (CCSs) for the HO-1D, we
introduce the excited binomial states (EBSs) by repeatedly (m fold, where m is a positive
integer) application of the SU(1,1) raising operator on the non-excited (“fiducial”) BS
|z,M ; k; 0⟩, in perfect analogy with the definition of the photon added CSs, see [9] (for the
HO - 1D) or [10] (for the PHO):

|z,M ; k;m⟩ ≡ N (M)
m (|z|2) (K+)

m |z,M ; k; 0⟩. (34)

The action of the raising operator on the basis states is

(K+)
m|n; k⟩ =

√
Γ(n+m+ 1)Γ(n+ 2k +m)

Γ(n+ 1)Γ(n+ 2k)
|n+m; k⟩. (35)

If we introduce the short notation

B(M ;m)
n ≡

√
Γ(M + 1)

Γ(n+m+ 1)Γ(n+ 2k +m)

Γ(M + 1− n) [Γ(n+ 1)]2 Γ(n+ 2k)
, (36)

then the EBSs become

|z,M ; k;m⟩ ≡ N (M)
m (|z|2)

M∑
n=0

B(M ;m)
n zn

(
1− |z|2

)M−n
2 |n+m; k⟩. (37)

The normalization function N
(M)
m (|z|2) (with the evident condition N

(M)
0 (|z|2) = 1) is

obtained if we impose that the EBSs must be normalized to unity: ⟨z,M ; k;m|z,M ; k;m⟩ =
1.
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In order to deduce the normalization function, it is useful to examine the following
sum:

S
(M ;m)
0 (X) ≡

M∑
n=0

[
B(M ;m)

n

]2
Xn, (38)

implicitly, using the properties of the shifted factorials (or Pochhammer symbols), as well
as the binomial coefficients [6, 7]:

(a)n =
Γ(a+ n)

Γ(a)
= (−1)n

Γ(1− a)

Γ(1− a− n)
. (39)

So we obtain successively, expressing the sum through the hypergeometric pFq(. . . ;X) and
Meijer G-functions Gmn

pq (X| . . .)

S
(M ;m)
0 (X) =

Γ(2k +m)Γ(m+ 1)

Γ(2k) 3

F2(−M,m+ 1, 2k +m; 1, 2k;−X)

=
1

Γ(−M)
G13

33

(
X

∣∣∣∣M + 1, −m, 1− 2k −m;
0; 1− 2k, 0

)
. (40)

Finally, the normalization function is

N (M)
m (|z|2) =

1

(1− |z|2)
M
2

1√
S
(M ;m)
0 (X)

=

√
Γ(−M)

(1− |z|2)
M
2

1√
G13

33

(
X

∣∣∣∣M + 1, −m, 1− 2k −m;
0; 1− 2k, 0

) , (41)

and also the EBSs for the PHO are

|z,M ; k;m⟩ ≡ 1√
S
(M ;m)
0 (X)

M∑
n=0

B(M ;m)
n

(
z√

1− |z|2

)n

|n+m; k⟩. (42)

Let us now perform the resolution of the identity operator.∫
dµ(M)

m (z; k)|z,M ; k;m⟩⟨z,M ; k;m| = IM+1, (43)

where the integration measure with the unknown weight function h
(M)
m (|z|2; k) is

dµ(M)
m (z; k) =

d2z

π
h(M)
m (|z|2; k) = dφ

2π
d(|z|2)h(M)

m (|z|2; k). (44)
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After suitable function changes (similar to those in the case of BSs for the PHO, Sec. III)
and using the properties of Meijer’s G-functions [6, 7], the integration measure of the EBSs
becomes

dµ(M)
m (z; k) =

1

Γ(M + 1)

dφ

2π

d(|z|2)
(1− |z|2)2

S
(M ;m)
0 (X)G31

33

(
|z|2

1− |z|2

∣∣∣∣M − 1; m, 2k − 1 +m
0, 0, 2k − 1;

)
.

(45)

Moreover it is not difficult to demonstrate that this integration measure ensures the validity
of the identity operator resolution.

At the end of this section let us we calculate the photon (boson) probability dis-
tribution, i.e., the probability of finding n + m particles (photons, bosons) in the EBS
|z,M ;λ;m⟩:

P
(M ;m)
n+m (|z|2; k) = |⟨n+m;λ|z,M ;λ;m⟩|2 = 1

S
(M ;m)
0 (X)

[
B

(M ;m)
n−m

]2
Xn−m. (46)

V. NON-CLASSICAL BEHAVIOR OF THE EBSs

Generally, the expectation (or mean) value of a physical observable which characterize
a quantum system connected with a PHO, in the ECSs representation, can be expressed as

⟨z,M ; k;m|A|z,M ; k;m⟩ ≡ ⟨A⟩(M ;m)
z

=
[
N (M)

m (|z|2)
]2 M∑

n,n′=0

B(M ;m)
n B

(M ;m)
n′ zn(z∗)n

′

(
1− |z|2

)M−n+n′
2 ⟨n′ +m; k|A|n+m; k⟩. (47)

We will provide particular attention to the expectations of integer powers (s = 1, 2, . . .) of
the particle number operator N :

N s|n+m; k⟩ = (n+m)s|n+m; k⟩. (48)

The expectation value becomes

⟨N s⟩(M ;m)
z =

1

S
(m)
0 (X)

s∑
l=0

(
s
l

)
ms−lS

(M ;m)
l (X), (49)

where we have used the short notation

S
(M ;m)
l (X) ≡

M∑
n=0

B(M ;m)
n Xnnl =

(
X

d

dX

)l

S
(M ;m)
0 (X)

=
1

Γ(−M)

(
X

d

dX

)l

G13
33

(
X

∣∣∣∣M + 1, −m, 1− 2k −m;
0; 1− 2k, 0

)
. (50)
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In order to use the differential properties of Meijer’s G-functions [6], we must pay attention
to the following differentiation equality:(

X
d

X

)l

(. . .) =

l∑
j=0

c
(l)
j Xj

(
d

X

)j

(. . .) . (51)

Here, the real coefficients c
(l)
j are the same as those from the development of the integer

power of a natural number ns, written as a finite series [10]:

nl =
l∑

j=0

c
(l)
j

(
n
j

)
j! . (52)

If we use the short notation (with j = 0, 1, 2, . . .):

G13
33

(
X

∣∣∣∣M + 1, −m, 1− 2k −m;
0; 1− 2k, 0

)
= G13

33

(
X

∣∣∣∣ . . . , (m)
. . . , 0

)
, (53)

then for our case we obtain(
X

d

X

)l

G13
33

(
X

∣∣∣∣ . . . , (m)
. . . , 0

)
=

l∑
j=0

c
(l)
j Xj

(
d

X

)j

G13
33

(
X

∣∣∣∣ . . . , (m)
. . . , 0

)

=
l∑

j=0

c
(l)
j G14

44

(
X

∣∣∣∣ 0, M + 1, −m, 1− 2k −m;
0; 1− 2k, 0, j

)

=

l∑
j=0

c
(l)
j G13

33

(
X

∣∣∣∣ . . . , (m)
. . . , j

)
. (54)

Finally, the expectation value is

⟨N s⟩(M ;m)
z =

s∑
l=0

(
s
l

)
ms−l

[
l∑

j=0
c
(l)
j G13

33

(
X

∣∣∣∣M + 1, −m, 1− 2k −m;
0; 1− 2k, j

)]

G13
33

(
X

∣∣∣∣M + 1, −m, 1− 2k −m;
0; 1− 2k, 0

) , (55)

or, in short notation

⟨N s⟩(M ;m)
z =

s∑
l=0

(
s
l

)
ms−l

[
l∑

j=0
c
(l)
j G13

33

(
X

∣∣∣∣ . . . , (m)
. . . , j

)]

G13
33

(
X

∣∣∣∣ . . . , (m)
. . . , 0

) . (56)
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A useful way to measure the deviation from the Poisson distribution of the number of

particles and to characterize the corresponding quantum field is via the Mandel Q
(M ;m)
z

parameter, defined as [8, 11]

Q(M ;m)
z ≡ V

(M ;m)
z

⟨N⟩(M ;m)
z

− 1 =
⟨N2⟩(M ;m)

z −
(
⟨N⟩(M ;m)

z

)2
⟨N⟩(M ;m)

z

− 1, (57)

where V
(M ;m)
z is the variance of the particle (photon or boson) distribution, which measures

the deviation from the Poisson distribution. This is always a positive quantity: V
(M ;m)
z ≡

⟨(N − ⟨N⟩)2⟩(M ;m)
z ≥ 0.

The eigenvalue n of the number-particle operator N is regarded as the number of
photons (bosons) or intensity emitted within a certain time interval by a light source.

Depending on the values of the Mandel parameter, as a function of the variable |z|2,
it can compute the areas where this function is negative, zero, or positive, so the field has
a sub-Poissonian, Poissonian, respectively super-Poissonian behaviour.

Propositon 5.1: The Mandel parameter Q
(M ;m)
z compares the fluctuations of the par-

ticle number operator to that of a Poissonian source. If Q
(M ;m)
z < 0, = 0, respectively > 0,

the field is called sub-Poissonian, Poissonian, respectively super-Poissonian.
Proof 5.1: In order to demonstrate this assertion, we appeal to the CSs of a one-

dimensional harmonic oscillator (HO-1D):

|z⟩ = exp

(
−|z|2

2

) ∞∑
n=0

zn√
n!
|n⟩, (58)

with number states |n⟩ ≡ |n;λ = 0⟩ in our notation of Sec. I.
A Poissonian source is an ideal laser which generates the coherent states of the HO-

1D.
The mean value of integer power of the particle-number operator N s in a CS of the

HO-1D is

⟨N s⟩ = e−|z|2
(
|z|2 d

d|z|2

)s

e|z|
2
, (59)

so that the Mandel parameter for a Poissonian source (ideal laser) is

Qz =
⟨N2⟩z − (⟩N⟩z)2

⟨N⟩z
− 1 = 0. (60)

The corresponding weighting function is

Pn(|z|2) ≡ |⟨n|z⟩|2 = exp
(
−|z|2

) (|z|2)n
n!

= exp (−⟨N⟩) (⟨N⟩)n

n!
, (61)

i.e., the Poissonian distribution in the variable ⟨N⟩ = |z|2.
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Consequently, the coherent states have Poissonian behavior, and the Mandel param-
eter vanishes for the Poisson distribution.

Generally, the sub-Poissonian field has the fluctuations or photon count noise smaller
than that of coherent (ideal laser) light with the same intensity. The most sub-Poissonian
states are the number-states |n⟩ of particles with boson statistics, for which ⟨N s⟩n ≡
⟨n|N s|n⟩ = ns, so that the corresponding Mandel parameter is Qn = −1, i.e., the greatest
possible negative value allowed for the Mandel parameter, because the variance is always
positive.

Ultimately, as an example of a super-Poissonian state, is the chaotic state, whereas
the field which has photon-count noise higher than the coherent-light noise is called a super-
Poissonian field. Thermal radiation is often called chaotic light because it has no order, as
we shall see later.

For the EBSs of the PHO, the Mandel Q
(M ;m)
z parameter becomes

Q(M ;m)
z =

G13
33

(
X
∣∣∣ . . . , (m)

. . . , 2

)
G13

33

(
X
∣∣∣ . . . , (m)

. . . , 0

)
−
[
G13

33

(
X
∣∣∣ . . . , (m)

. . . , 1

)]2
−m

[
G13

33

(
X
∣∣∣ . . . , (m)

. . . , 0

)]2
G13

33

(
X
∣∣∣ . . . , (m)

. . . , 1

)
G13

33

(
X
∣∣∣ . . . , (m)

. . . , 0

)
+mG13

33

(
X
∣∣∣ . . . , (m)

. . . , 0

) . (62)

Depending on the range of the complex variable |z| < 1 and also of the order of excitation
m, it can compute the areas where the Mandel parameter is negative, zero, or positive,
corresponding to the sub-Poissonian, Poissonian, or super-Poissonian behavior of the cor-
responding fields.

Using the differentiation properties of the Meijer functions and Eq. (40), it is useful
to rewrite the above expression in the following manner:

Q(M ;m)
z =

X2 d
dX

[
d
dX lnG13

33

(
X

∣∣∣∣ . . . , (m)
. . . , 0

)]
−m

X

[
d
dX lnG13

33

(
X

∣∣∣∣ . . . , (m)
. . . , 0

)]
+m

=
X2 d

dX

[
d
dX lnS

(M ;m)
0 (X)

]
−m

X
[

d
dX lnS

(M ;m)
0 (X)

]
+m

. (63)

Because it is difficult to represent this general expression of the Mandel parameter as a
function of |z|, in order to evince the behavior of the EBSs we adopt an approximate

expression, obtained by expanding lnS
(M ;m)
0 (X) in a power series of the variable X =

|z|2/(1 − |z|2) around X = 0 (i.e., for small |z|2) and truncating the development at the
first power of variable X. Using Eqs. (38) and (36), we obtain

lnS
(M ;m)
0 (X) = ln

[
B

(M ;m)
0

]2
+X

[
B

(M ;m)
1

]2
[
B

(M ;m)
0

]2+. . . = lnΓ(m+1)+M(m+1)
(
1 +

m

2k

)
X+. . . .

(64)
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So, in the approximation for small |z|2, the Mandel parameter becomes

Q(M ;m)
z =

−m

M(m+ 1)
(
1 + m

2k

) |z|2
1−|z|2 +m

< 0, (65)

which shows that for small values of |z|2, the behavior of BSs is sub-Poissonian.
Particularly, for m = 0 we can express the above Meijer functions through the Jacobi

polynomials (see Appendix A):

G13
33

(
X

∣∣∣∣M + 1, 0, 1− 2k;
0; 1− 2k, j

)
= G12

22

(
X

∣∣∣∣M + 1, 0;
0; j

)
= Γ(−M)Γ(j + 1)(X + 1)M (−1)jP

(−M−1;−j)
j

(
X − 1

X + 1

)
= (−1)jΓ(−M + j)Xj(X + 1)M−j , (66)

and we can calculate exactly the Mandel parameter for the non-excited BSs:

Q(M ;0)
z =

G12
22

(
X

∣∣∣∣M + 1, 0;
0; 2

)
G12

22

(
X

∣∣∣∣M + 1, 0;
0; 1

) −
G12

22

(
X

∣∣∣∣M + 1, 0;
0; 1

)
G12

22

(
X

∣∣∣∣M + 1, 0;
0; 0

) = −|z|2 < 0. (67)

This result shows that the non-excited BSs have a sub-Poissonian behavior, and this state-
ment is consistent with the results of other authors [1, 18].

VI. THERMAL STATES

Let us consider a thermal state of a PHO quantum system in thermodynamical equi-
librium with the environment described by the global density operator

ρ =
1

Z(β)

∞∑
J=0

(2J + 1)ZJ(β)ρJ(β). (68)

The reduced density operator which corresponds to a rotational state (a state with a fixed
rotational quantum numberJ) is characterized by the canonical distribution function

ρJ =
1

ZJ(β)

∞∑
n=0

e−βEnJ |n; k⟩⟨n; k|, (69)

with the partial (rotational) partition function

ZJ(β) =

∞∑
n=0

e−βEnJ = e−βE0J

∞∑
n=0

(
e−βh̄ω

)n
= e+β

mredω
2

4
r20 (n̄+ 1)

(
n̄

n̄+ 1

)k

, (70)
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where we have used the particle number mean value (Bose-Einstein distribution function):

n̄ =
1

eβh̄ω − 1
, β = (kBT )

−1. (71)

This approach shows that the “rotational” density operator ρJ is, in fact, a reduced density
operator of the whole density operator ρ, because we have summed over the vibrational
quantum number n.

Moreover, the global (or whole) partition function is

Z(β) =
∞∑

n,J=0

e−βEnJ =
∞∑
J=0

(2J + 1)ZJ(β), (72)

where we have taken into account the rotational degeneration with the rotational degree of
degeneration gJ = 2J + 1.

In order to reveal the properties of Husimi’s Q- and P - functions attached to the PHO,
we pay particular attention to the their rotational or reduced density operator ρJ [12]:

ρJ =
1

n̄+ 1

∞∑
n=0

(
n̄

n̄+ 1

)n

|n; k⟩⟨n; k|. (73)

i.e., we examine the “rotational” part of these distribution functions. This approach is
justified because the EBSs |z,M ; k;m⟩ are dependent on the rotational quantum number
through the Bargmann index k = k(J).

In order to provide insight into the classical features of the radiation field, as well as
for performing a statistical description of the quantum systems connected with a PHO, we
will direct our attention to two important functions: the Husimi’s Q- distribution function
and also the Glauber – Sudarshan P - (quasi-)distribution function.

VI-1. Husimi’s Q- distribution function

The “rotational” Husimi Q- distribution function attached to the reduced density
operator ρJ is defined through the expectation value

Q
(M ;m)
J (|z|2) ≡ ⟨z,M ; k;m|ρJ |z,M ; k;m⟩. (74)

Proposition 6.1: The Husimi Q- distribution function attached to the reduced density oper-
ator ρJ of the PHO has the following expression:

Q
(M ;m)
J (|z|2) =

1

n̄+ 1

Γ(M + 1)

Γ(M +m+ 1)Γ(−M −m)

X−m

S
(M ;m)
0 (X)

G14
44

(
n̄

n̄+ 1
X

∣∣∣∣ 1 +M +m, 0, 0, 1− 2k;
0; m, m, 1− 2k −m

)
. (75)

Proof 6.1: We start from the above expression for the reduced operator ρJ :

Q
(M ;m)
J (|z|2) = 1

n̄+ 1

∞∑
n=0

(
n̄

n̄+ 1

)n

|⟨n; k|z,M ; k;m⟩|2, (76)
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where the probability P
(M ;m)
n (|z|2; k) of transition from the Fock state |n; k⟩ to the EBS

attached to the PHO |z,M ; k;m⟩ is

P (M ;m)
n (|z|2; k) = |⟨n; k|z,M ; k;m⟩|2 = 1

S
(M ;m)
0 (X)

[
B

(M ;m)
n−m

]2
Xn−m. (77)

The square of coefficients can be expressed through the Pochhammer symbols:[
B

(M ;m)
n−m

]2
= Γ(M+1)

Γ(2k)

Γ(M +m+ 1) [Γ(1−m)]2 Γ(2k −m)
· (1)n(2k)n(−M −m)n

(−1)n [(1−m)n]
2 (2k −m)n

,

(78)

in order to express the Q- distribution function through the hypergeometric function

pFq(. . .) and, finally, through Meijer’s G - function.

Q
(M ;m)
J (|z|2) =

1

n̄+ 1

X−m

S
(m)
0 (X)

Γ(M + 1)Γ(2k)

Γ(M +m+ 1) [Γ(1−m)]2 Γ(2k −m)

·4F3

(
−M −m, 1, 1, 2k; 1−m, 1−m, 2k −m;− n̄

n̄+ 1
X

)
. (79)

From a practical point of view it is advantageous to express the hypergeometric function
through the Meijer function by using the equation [13]

4F3(−M −m, 1, 1, 2k; 1−m, 1−m, 2k −m;− n̄

n̄+ 1
X)

=
[Γ(1−m)]2 Γ(2k −m)

Γ(−M −m)Γ(2k)
G14

44

(
n̄

n̄+ 1
X

∣∣∣∣ 1 +M +m, 0, 0, 1− 2k;
0; m, m, 1− 2k −m

)
. (80)

In this manner, we obtained the final results for the Q- distribution function of the EBSs
for PHO. This ends the proof.

VI-2. P - (quasi-)distribution function

Now, let us calculate the diagonal representation of the “rotational” density operator
in terms of EBSs, in order to find the P - (quasi-)distribution function.

Proposition 6.2: Let |z,M ; k;m⟩ and ρ(M ;m)
J be the EBSs, respectively, the “rotational”

density operator for the PHO. Then the diagonal representation of the “rotational” density
operator in terms of EBSs reads

ρ
(M ;m)
J =

∫
dµ

(m)
J (z)|z,M ; k;m⟩P (M ;m)

J

(
|z|2
)
⟨z,M ; k;m|, (81)

with the earlier determined integration measure dµ
(m)
J (z) and the following P - (quasi) dis-

tribution function:

P
(M ;m)
J

(
|z|2
)
=

1

n̄

1

1−
(

n̄
n̄+1

)M+1

G31
33

(
n̄+1
n̄

|z|2
1−|z|2

∣∣∣∣M − 1; m, 2k − 1 +m
0, 0, 2k − 1;

)
G31

33

(
|z|2

1−|z|2

∣∣∣∣ −M − 1; m, 2k − 1 +m
0, 0, 2k − 1;

) . (82)
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Proof 6.2: The rotational density operator ρ
(M ;m)
J for the excited states can be expressed

in the Fock - vector representation by considering that the energy eigenvalues of an excited
state are En+m,J = E0,J + h̄ω(n+m):

ρ
(M ;m)
J =

1

Z
(M ;m)
J (β)

M∑
n=0

(
n̄

n̄+ 1

)n+m

|n+m; k⟩⟨n+m; k|, (83)

while the corresponding partition function is then

Z
(M ;m)
J (β) =

M∑
n=0

(
n̄

n̄+ 1

)n+m

= (n̄+ 1)

(
n̄

n̄+ 1

)m
[
1−

(
n̄

n̄+ 1

)M+1
]
. (84)

On the one hand, the normalized rotational density operator for the excited states in the
Fock-vector representation is

ρ
(M ;m)
J =

1

(n̄+ 1)

[
1−

(
n̄

n̄+1

)M+1
] M∑

n=0

(
n̄

n̄+ 1

)n

|n+m; k⟩⟨n+m; k|, (85)

and on the other hand, in the EBSs representation, the same operator becomes

ρ
(M ;m)
J =

M∑
n=0

[
B

(M ;m)
n−m

]2
|n+m; k⟩⟨n+m; k|

·
1∫

0

d
(
|z|2
)
h(M)
m (|z|2; k) 1

(1− |z|2)M
1

S
(m)
0 (X)

(1− |z|2)M

(
n̄

n̄+ 1

)n

P
(M ;m)
J

(
|z|2
)
. (86)

By equalizing the right hand sides of the above two expressions for the density operator,
and passing to the variable X simultaneously with the index change n = s− 1, we are lead
to the following integral equation:

∞∫
0

dXXs−1h
(M)
m (X; k)

(1 +X)2
P

(M ;m)
J (X)

S
(M ;m)
0 (X)

=
1

n̄

1

1−
(

n̄
n̄+1

)M+1

1(
n̄+1
n̄

)s 1[
B

(M ;m)
s−1

]2
=

1

n̄

1

1−
(

n̄
n̄+1

)M+1

1(
n̄+1
n̄

)s 1

Γ(M + 1)

[Γ(s)]2 Γ(s+ 2k − 1)Γ(M + 2− s)

Γ(s+m)Γ(s+ 2k − 1 +m)
. (87)
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After the function change

G
(M ;m)
J (X) ≡ h

(M)
m (X; k)

(1 +X)2
P

(M ;m)
J (X)

S
(M ;m)
0 (X)

, (88)

we get to the following Stieltjes moment problem:
∞∫
0

dXXs−1G
(M ;m)
J (X)

=
1

n̄

1

1−
(

n̄
n̄+1

)M+1

1(
n̄+1
n̄

)s 1

Γ(M + 1)

[Γ(s)]2 Γ(s+ 2k − 1)Γ(M + 2− s)

Γ(s+m)Γ(s+ 2k − 1 +m)
. (89)

The solution of such a problem is expressed through the Meijer G-function [7]:

G
(M ;m)
J (X) =

1

n̄

1

1−
(

n̄
n̄+1

)M+1

1

Γ(M + 1)
G31

33

(
n̄+ 1

n̄
X

∣∣∣∣ −M − 1; m, 2k − 1 +m
0, 0, 2k − 1;

)
.

(90)

In this manner, we obtain the above final expression of the P - (quasi-)distribution function.
Proposition 6.3: The P - distribution function must be normalized to unity, i.e., the

following relation is fulfilled:∫
dµ

(m)
J (z)P

(M ;m)
J

(
|z|2
)
= 1. (91)

Proof 6.3: If we successively use the normalization condition of the density operator, the
non-orthogonality relation, and the resolution of the unity operator for EBSs, we obtain

1 = Trρ
(M ;m)
J =

∫
dµ

(m)
J (z′)⟨z′,M ; k;m|ρ(M ;m)

J |z′,M ; k;m⟩ =
∫

dµ
(m)
J (z)P

(M ;m)
J

(
|z|2
)
,

(92)

where we have used the relation for the resolution of the identity operator and also the
normalization relation for the EBSs.

By the corresponding substitutions, the last equality becomes∫
dµ

(m)
J (z)P

(M ;m)
J

(
|z|2
)
=

1

n̄

1

1−
(

n̄
n̄+1

)M+1

1

Γ(M + 1)Γ(−M)
· I(M)

0 (n̄), (93)

where with I
(M)
0 (n̄) we have denoted the integral involving the product of two Meijer G –

functions:

I
(M)
0 (n̄) ≡

∞∫
0

dXG13
33

(
X

∣∣∣∣M + 1; −m, 1− 2k −m
0; 1− 2k, 0

)

G31
33

(
n̄+ 1

n̄
X

∣∣∣∣ −M − 1; m, 2k − 1 +m
0, 0, 2k − 1;

)
. (94)



VOL. 52 DUŞAN POPOV AND NICOLINA POP 755

This reduces to (as a particular case of Eq. (B4) from Appendix B)

I
(M)
0 (n̄) = n̄

[
1−

(
n̄

n̄+ 1

)M+1
]
. (95)

Therefore, the integral of the P - distribution function is really equal to unity. Now, let us
calculate the thermal expectations of an observable using the rotational density operator
in the EBSs representation. The corresponding formula is

⟨A⟩(M ;m)
J ≡ Trρ

(M ;m)
J A =

∫
dµ

(m)
J (z′)⟨z′,M ; k;m|ρ(M ;m)

J A|z′,M ; k;m⟩

=

∫
dµ

(m)
J (z)P

(M ;m)
J

(
|z|2
)
⟨A⟩(M ;m)

z . (96)

If we consider A = N s then we have

⟨N s⟩(M ;m)
J =

∫
dµ

(m)
J (z)P

(M ;m)
J

(
|z|2
)
⟨N s⟩(M ;m)

z

=
1

n̄

1

1−
(

n̄
n̄+1

)M+1

1

Γ(−M)Γ(M + 1)

s∑
l=0

(
s
l

)
ms−l

l∑
j=0

c
(l)
j I

(M)
j (n̄), (97)

where the new integral is

I
(M)
j (n̄) ≡

∞∫
0

dXG13
33

(
X

∣∣∣∣M + 1, −m, 1− 2k −m;
0; 1− 2k, j

)

G31
33

(
n̄+ 1

n̄
X

∣∣∣∣ −M − 1; m, 2k − 1 +m
0, 0, 2k − 1;

)
. (98)

By using the corresponding properties of the Meijer G-functions [7] and the notation Y ≡
n̄(n̄+ 1)−1, we obtain successively

⟨N s⟩(M ;m)
J =

1
Y M+1−1

Y−1

s∑
l=0

(
s
l

)
ms−l

l∑
j=0

c
(l)
j Y j dj

dY j

[
Y M+1 − 1

Y − 1

]
, (99)

or, again using Newton’s binomial formula, finally, we obtain

⟨N s⟩(M ;m)
J =

1
Y M+1−1

Y−1

(
m+ Y

d

dY

)s [Y M+1 − 1

Y − 1

]
≡ ⟨N s⟩(M ;m). (100)

Consequently, the thermal expectations of the particle number operator do not depend on
the rotational quantum number J , i.e., the rotational motion doesn’t contribute to the
thermal expectation value. This result was expected because the operator N was defined
relative to changes in the number of vibrational quanta n: N |n; k⟩ = n|n; k⟩, and, as a
consequence, it does not change the rotational quantum number J .
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The structure of the last equation imposes, naturally, the following notation for the
finite sum, with the observation that Y = Y (n̄):

SM (Y ) ≡
M∑
n=0

Y n =
Y M+1 − 1

Y − 1
(101)

and S′
M (n̄), S′′

M (n̄), . . . as their first, second, . . . derivative with respect to Y .
It can be seen that SM (Y ) is independent on the excitation order m.
This allows us to obtain the final expression for the thermal expectation of the integer

powers of the particle number operator:

⟨N s⟩(M ;m) =
1

SM (Y )

(
m+ Y

d

dY

)s

SM (Y ). (102)

Definition 6.1: The thermal analogue of the Mandel parameter was previously defined as [8,
14]

Q(M ;m) =
⟨N2⟩(M ;m) −

[
⟨N⟩(M ;m)

]2
⟨N⟩(M ;m)

− 1. (103)

By particularizing s = 1 and s = 2, for the EBSs this parameter becomes

Q(M ;m)(Y ) =

Y 2

[
S′′
M (Y )

SM (Y ) −
(
S′
M (Y )

SM (Y )

)2]
−m

Y
S′
M (Y )

SM (Y ) +m
=

Y 2 d
dY

[
d
dY lnSM (Y )

]
−m

Y
[

d
dY lnSM (Y )

]
+m

. (104)

So, the thermal analogue of Mandel’s parameter is dependent on the mean number of par-

ticles Y = Y (n̄), where Y = n̄/(n̄+ 1) = exp
(
− h̄ω

kBT

)
, and, ultimately, on the equilibrium

temperature T . One can calculate the intervals where Q(M ;m)(Y ) is negative, zero, or
positive, which correspond to sub-Poissonian, Poissonian, or super-Poissonian behavior of
thermal states.

At the extreme equilibrium temperatures T the behavior of the thermal Mandel
parameter is negative, as is shown in the table below.

Low temperatures T → 0 Y → 0 Q(M ;m) → −1 sub-Poissonian

High temperatures T → ∞ Y → 1 Q(M ;m) → −1 sub-Poissonian

So, the thermal BSs have a sub-Poissonian behavior at the extreme equilibrium tem-
peratures.
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VII. HARMONIC LIMIT OF THE EBSs FOR THE PHO

We organize this section in two steps. First, we apply the limit m → 0 to some of the
relations and characteristics A(M ;m) regarding the EBSs for the PHO obtained in previous
sections. As a result we obtain the corresponding relations for non-excited BSs for the PHO
denoted by A(M ;0). Second, we apply the harmonic limit to the obtained results A(M ;0) for
non-excited BSs for the PHO and recover the corresponding relations for the HO-1D, i.e.,
A(HO−1D) (see, e.g., [8]).

We must emphasize that the harmonic limit can be applied directly to the EBSs for
the PHO, by using some limit properties of Meijer’s G-functions, but the strategy which
we have adopted seems to be much simpler. This approach can be presented as follows:

A(M ;m)

(EBSs for PHO)
→
lim

m→∞

A(M ;0)

(BSs for PHO)
→
lim
HO

A(HO-1D)

(CSs for HO-1D)
. (105)

From the operational point of view, this means that

lim
HO

[
lim
m→0

A(M ;m)
]
= lim

HO
A(M ;0) = A(HO−1D). (106)

Definition 1. We call the harmonic limit lim
HO

such a limit for which M → ∞ and, simulta-

neously, |z|2 → 0 , but such that their product remains finite M |z|2 = |α|2 , where α is a
complex constant. The short notation of the harmonic limit is

lim
HO

(. . .) ≡ lim
M → ∞
|z|2 → 0

M |z|2 → |α|2

(. . .). (107)

Implicitly, this approach may be a test of correctness for the obtained expressions.

VII-1. The non-excited BSs for the PHO (case m = 0)

Making use of the properties of reduction of order for the Meijer G-functions (see

Appendix A, Eq. (A1)), we can calculate the sum S
(M ;m)
0 (X) (Eq. (38)) for m = 0 [9]:

lim
m→0

S
(M ;m)
0 (X) ≡ S

(M ;0)
0 (X) =

1

Γ(−M)
G13

33

(
X

∣∣∣∣M + 1, 0, 1− 2k;
0; 1− 2k, 0

)
=

1

Γ(−M)
G11

11

(
X

∣∣∣∣M + 1
0

)
=

1

Γ(−M)
Γ(−M)(1 +X)M

=
1

(1− |z|2)M
, (108)

so, we obtain N
(M)
0 (|z|2) = 1, i.e., just as for non-excited or usual BSs.
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For the particular case of non-excited BSs (m = 0), Eq. (46) for the photon (boson)
probability distribution leads to

lim
m→0

P (M ;m)
n (|z|2; k) ≡ P (M ;0)

n (|z|2; k) =
(

M
n

)
(|z|2)n(1− |z|2)M−n, (109)

i.e., to the binomial distribution function.

Particularly, for m = 0, the Mandel parameter Q
(M ;m)
z for EBSs, Eq. (62) leads to

the corresponding result for the usual BSs:

lim
m→0

Q(M ;m)
z ≡ Q(M ;0)

z =

G13
33

(
X

∣∣∣∣ . . . , (0). . . , 2

)
G13

33

(
X

∣∣∣∣ . . . , (0). . . , 1

) −
G13

33

(
X

∣∣∣∣ . . . , (0). . . , 1

)
G13

33

(
X

∣∣∣∣ . . . , (0). . . , 0

) . (110)

From their mathematical structure, the obtained result is similar as that for the photon
added coherent states for the PHO [6].

Let us calculate the above expression. By using the differential properties of the
Meijer G-functions and also their specialized value, see Eqs. (A3) and (A7), we have [6]

G13
33

(
X

∣∣∣∣ . . . , (0). . . , j

)
≡ G13

33

(
X

∣∣∣∣M + 1, 0, 1− 2k;
0; 1− 2k, j

)
= G12

22

(
X

∣∣∣∣M + 1, 0;
0; j

)
= Xj

(
d

dX

)j

G11
11

(
X

∣∣∣∣M + 1
j

)
=

Γ(−M)Γ(M + 1)

Γ(M + 1− j)

1

(1− |z|2)M
(
|z|2
)j

, (111)

and so, for the Mandel parameter for the BSs of the PHO, we obtain Q
(M ;0)
z = −|z|2 < 0,

which shows that the BSs have a sub-Poissonian behavior.
The rotational Husimi Q- function Q

(M ;m)
J (|z|2), Eq. (75) for m = 0 must tend to the

corresponding function for the BSs:

lim
m→0

Q
(M ;m)
J (|z|2) ≡ Q

(M ;0)
J (|z|2)

=
1

n̄+ 1

1

Γ(−M)

Γ(−M)

G11
11

(
X

∣∣∣∣ 1 +M
0

)G11
11

(
n̄

n̄+ 1
X

∣∣∣∣ 1 +M
0

)

=
1

n̄+ 1

(
1− 1

n̄+ 1
|z|2
)M

≡ Q(M ;0)
(
|z|2
)
. (112)
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For m = 0 the rotational P - (quasi-)distribution function, Eq. (82) becomes

lim
m→0

P
(M ;m)
J (|z|2) ≡ P

(M ;0)
J

(
|z|2
)
=

1

n̄

1

1−
(

n̄
n̄+1

)M+1

G11
11

(
n̄+1
n̄

|z|2
1−|z|2

∣∣∣∣ −M − 1
0

)
G11

11

(
|z|2

1−|z|2

∣∣∣∣ −M − 1
0

)
=

1

n̄

1

1−
(

n̄
n̄+1

)M+1

1(
1 + 1

n̄ |z|2
)M+2

≡ P (M ;0)
(
|z|2
)
. (113)

In these last two equations we used the last notation in order to evince that Husimi’s
Q- distribution function, as well as the P - (quasi-)distribution function of the BSs are
independent of the rotational quantum number J .

By taking m = 0 in Eq. (104) we obtain the corresponding thermal analogue of
Mandel’s parameter for the usual BSs:

lim
m→0

Q(M ;m)(Y ) ≡ Q(M ;0)(Y ) = Y

[
S′′
M (Y )

S′
M (Y )

−
S′
M (Y )

SM (Y )

]
. (114)

This equation can be expressed in the following manner, which is similar to the form
presented in [4]:

Q(M ;0)(Y ) = Y
d

dY

[
ln

(
d

dY
lnSM (Y )

)]
. (115)

These relations will be useful in order to calculate the harmonic limit.

VII-2. The harmonic limit

The usual or unexcited BSs have as the limit just the canonical coherent states (CSs)
for the one-dimensional harmonic oscillator (HO-1D).

Proposition 8: At the harmonic limit, the BSs |z,M ;λ; 0⟩ tends to the canonical CSs
for the HO-1D:

lim
HO

|z,M ;λ; 0⟩ ≡ lim
M → ∞
|z|2 → 0

M |z|2 → |α|2

|z,M ;λ; 0⟩ (116)

= exp

(
−1

2
|α|2

) ∞∑
n=0

αn

√
n!
|n;λ = 0⟩ ≡ |α;λ = 0⟩HO−CSs. (117)

Proof 8. We begin from the asymptotic expression of the Euler Gamma function:

Γ(x) =

√
2π

x

(x
e

)x [
1 +O

(
1

x

)]
, (118)



760 STATISTICAL PROPERTIES OF THE EXCITED . . . VOL. 52

and we obtain successively(
M
n

)
=

1

n!

Γ(M + 1)

Γ(M + 1− n)
≈ 1

n!

Γ(M)

Γ(M − n)
=

1

n!

√
M − n

M

(
M

M − n

)M 1

(M − n)−n

eM−n

eM
.

(119)

Having in mind that

lim
x→∞

(
1 +

a

x

)x
= ea, (120)

we obtain that the asymptotic for the binomial coefficient M is(
M
n

)
≈ 1

n!
(M − n)n. (121)

By applying the harmonic limits, we obtain

lim
HO

|z,M ;λ; 0⟩ →
∞∑
n=0

1√
n!
(M − n)

n
2
(
|z|2
)n

2
(
1− |z|2

)M−n
2 |n;λ = 0⟩

=
∞∑
n=0

1√
n!

(
1− n

M

)n
2 (

M |z|2
)n

2

(
1− M |z|2

M

)M
2
(
1− M |z|2

M

)−n
2

|n;λ = 0⟩

=
∞∑
n=0

1√
n!

(
1− n

M

1− M |z|2
M

)n
2

↓
1

(√
M |z|2

)n
↓
αn

(
1− M |z|2

M

)M
2

↓
e−

1
2
|α|2

|n;λ = 0⟩

= e−
1
2
|α|2

∞∑
n=0

αn

√
n!
|n;λ = 0⟩ ≡ |α⟩HO−1D, (122)

and the proof is finished.
Thus, the harmonic limit lim

HO
leads the BSs to the HO-1D CSs in the same way as

the binomial distribution tends to the Poisson distribution [15]:

P (M ;0)
n (|z|2) ≡ |⟨n;λ|z,M ;λ; 0⟩|2 =

(
M
n

)(
|z|2
)n

(1− |z|2)M−n

→ 1

n!

(
1− n

M

)n (
M |z|2

)n(
1− M |z|2

M

)M
1

(1− |z|2)n

→ 1

n!

(
|α|2

)n
e−|α|2 = P (Poisson)

n (|z|2). (123)
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Proposition 9: The harmonic limit of the EBSs for the PHO |z,M ; k;m⟩ is

lim
HO

|z,M ; k;m⟩

=

√
Γ(2k)

Γ(m+ 1)Γ(m+ 2k)

1

2F2(m+ 1, 2k +m; 1, 2k; |α|2)
(K+)

m

[ ∞∑
n=0

αn

√
n!
|n; k⟩

]
,

(124)

and, for m = 0, it leads to the canonical CSs for the HO-1D.
Proof 9. Beginning from the expression

lim
HO

|z,M ; k;m⟩ = 1√
lim
HO

S
(M ;m)
0 (X)

lim
HO

[
M∑
n=0

B(M ;m)
n

(
z√

1− |z|2

)n

|n+m; k⟩

]
, (125)

one can separately express the above limits:

lim
HO

B(M ;m)
n =

√
Γ(n+m+ 1)Γ(n+ 2k +m)

Γ(n+ 1)Γ(n+ 2k)

√
lim
HO

(
m

n

)

=

√
Γ(n+m+ 1)Γ(n+ 2k +m)

Γ(n+ 1)Γ(n+ 2k)

√
1

n!
(M − n)n

=

√
Γ(n+m+ 1)Γ(n+ 2k +m)

Γ(n+ 1)Γ(n+ 2k)

1√
n!

lim
HO

(√
M
)n

, (126)

B(M ;m)
n

(
z√

1− |z|2

)n

=

√
Γ(n+m+ 1)Γ(n+ 2k +m)

Γ(n+ 1)Γ(n+ 2k)

1√
n!

lim
HO

(√
M
)n( z√

1− |z|2

)n

=
1√
n!

lim
HO

( √
Mz√

1− |z|2

)n

=
1√
n!
αn lim

HO

(
1√

1− |z|2

)n

=
1√
n!
αn. (127)

On the other hand, the limit of the denominator is

lim
HO

S
(M ;m)
0 (X) =

Γ(2k +m)Γ(m+ 1)

Γ(2k)
lim
HO

3F2(−M,m+ 1, 2k +m; 1, 2k;−X). (128)

In order to use a limit property of the hypergeometric functions pFq(. . .) (see, Appendix A,



762 STATISTICAL PROPERTIES OF THE EXCITED . . . VOL. 52

Eq. (A12)), we will perform the following transformations:

3F2(−M,m+ 1, 2k +m; 1, 2k;−X) = 3F2

(
−M,m+ 1, 2k +m; 1, 2k;− |z|2

1− |z|2

)
= 3F2

(
−M,m+ 1, 2k +m; 1, 2k;− 1

M

M |z|2

1− M |z|2
M

)

= 3F2

(
−M,m+ 1, 2k +m; 1, 2k;− 1

M

|α|2

1− |α|2
M

)
= 2F2

(
m+ 1, 2k +m; 1, 2k; |α|2

)
. (129)

Evidently, for the HO-CSs the parameter λ = k is unimportant, so it can be taken to
vanish. So, the BSs bridge the gab between the Fock state and the coherent states of the
HO-1D by taking the above defined harmonic limit.

First, the integration measure (Eq. (45)) becomes

lim
HO

lim
m→0

dµ(M)
m (z; k) = lim

HO
dµ

(M)
0 (z; k)

=
dφ

2π
lim
HO

d(|z|2)
(1− |z|2)2

lim
HO

S
(M ;0)
0 (X) lim

HO

1

Γ(M + 1)
G31

33

(
|z|2

1− |z|2

∣∣∣∣ −M − 1;
0;

)
=

dφ

2π
lim
HO

d(|z|2)
(1− |z|2)2

lim
HO

1

(1− |z|2)M
(M + 1) lim

HO

1

Γ(M + 2)
G11

11

(
|z|2

1− |z|2

∣∣∣∣ −M − 1;
0;

)
=

dφ

2π
lim
HO

d(M |z|2 + |z|2)
(1− |z|2)M+2

lim
HO

1(
1− M |z|2

M

)M lim
HO

1

Γ(M + 2)
G11

11

(
1

M

M |z|2

1− |z|2

∣∣∣∣ −M − 1;
0;

)
.

(130)

For the last limit we will use the limit property of the Meijer G-functions (see, Appendix,
Eq. (A5)), so we obtain

lim
HO

lim
m→0

dµ(M)
m (z; k) =

dφ

2π
d(|α|2)e−|α|2G10

01

(
|α|2 |0

)
=

dφ

2π
d(|α|2)e−|α|2e|α|

2

=
dφ

2π
d(|α|2) = d2z

π
≡ dµ

(HO−1D)
0 (z), (131)

i.e., just the Lebesque measure.
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The harmonic limit of the photon distribution (Eq. (46)) becomes

lim
HO

lim
m→0

P
(M ;m)
n+m (|z|2; k) = lim

HO
lim
m→0

1

S
(M ;m)
0 (X)

lim
HO

lim
m→0

[
B

(M ;m)
n−m

]2
Xn−m

= lim
HO

1

S
(M ;0)
0 (X)

lim
HO

[
B(M ;0)

n

]2
Xn

= lim
HO

1(
1− M |z|2

M

)M lim
HO

1

n!
(M − n)n

1

Mn

(
M |z|2

1− |z|2

)n

=
1

n!
e−|α|2 (|α|2)n = P (HO−1D)

n (|α|2), (132)

i.e., just the Poisson distribution for the HO-1D.
The harmonic limit of the particle number operator, Eq. (55) in the limit becomes

lim
HO

lim
m→0

⟨N s⟩(M ;m)
z

= lim
HO

lim
m→0

s∑
l=0

(
s
l

)
ms−l

[
l∑

j=0
c
(l)
j G13

33

(
X

∣∣∣∣M + 1, −m, 1− 2k −m;
0; 1− 2k, j

)]

G13
33

(
X

∣∣∣∣M + 1, −m, 1− 2k −m;
0; 1− 2k, 0

)

= lim
HO

s∑
j=0

c
(s)
j G12

22

(
X

∣∣∣∣M + 1, 0;
0; j

)
G12

22

(
X

∣∣∣∣M + 1, 0;
0; 0

) = lim
HO

s∑
j=0

c
(s)
j Xj

(
d
dX

)j
G11

11

(
X

∣∣∣∣M + 1
j

)
G11

11

(
X

∣∣∣∣M + 1
j

)
= lim

HO

s∑
j=0

c
(s)
j

Γ(M + 1)

Γ(M + 1− j)

(
|z|2
)j

= lim
HO

s∑
j=0

c
(s)
j

(
M + 1

j

)
j!
(
|z|2
)j

≈ lim
HO

s∑
j=0

c
(s)
j (M + 1− j)j

(
|z|2
)j

=
s∑

j=0

c
(s)
j

(
M |z|2

)j
lim
HO

(
1 +

1− j

M

)j

=

s∑
j=0

c
(s)
j

(
|α|2

)j ≡ ⟨N s⟩(HO−1D)
α . (133)

By particularizing for s = 1 and 2, we obtain the harmonic limit of the Mandel parameter



764 STATISTICAL PROPERTIES OF THE EXCITED . . . VOL. 52

(Eq. (62))

lim
HO

lim
m→0

Q(M ;m)
z = lim

HO
lim
m→0

⟨N2⟩(M ;m)
z −

(
⟨N⟩(M ;m)

z

)2
⟨N⟩(M ;m)

z

− 1

=
⟨N2⟩(HO−1D)

α −
(
⟨N⟩(HO−1D)

α

)2
⟨N⟩(HO−1D)

α

− 1

=
|α|2 + |α|4 − |α|4

|α|2
− 1 = 0. (134)

The same result may be obtained by using the result after Eq. (60):

lim
HO

Q(M ;0)
z = lim

HO
|z|2 = lim

HO

M |z|2

M
= lim

HO

|α|2

M
= 0. (135)

This shows that the CSs of the HO-1D have a Poissonian behavior.
The harmonic limit of Husimi’s function Q

(M ;m)
J (|z|2) for the PHO is obtained by

applying, as usual, first the limit m → 0 and then the harmonic limit. So, the Husimi
function for the usual or non-excited BSs is

lim
HO

lim
m→0

Q
(M ;m)
J (|z|2) = lim

HO
Q

(M ;0)
J (|z|2) = 1

n̄+ 1
lim
HO

(
1−

1
n̄+1M |z|2

M

)M

=
1

n̄+ 1
e−

1
n̄+1

|α|2Q(HO−1D)(|α|2). (136)

As can be seen, the rotational Husimi’s Q- distribution function of the EBSs for the PHO
is independent of k = k(J), i.e., of the rotational quantum number J , only for the usual or
non-excited BSs (m = 0).

By applying the harmonic limit, we get to the P - (quasi-)distribution function of the
CSs of the HO-1D. For m = 0 the P - distribution function becomes

lim
m→0

P
(M ;m)
J (|z|2) ≡ P

(M ;0)
J

(
|z|2
)

=
1

n̄

1

1−
(

n̄
n̄+1

)M+1

G11
11

(
n̄+1
n̄

|z|2
1−|z|2

∣∣∣∣ −M − 1
0

)
G11

11

(
|z|2

1−|z|2

∣∣∣∣ −M − 1
0

)
=

1

n̄

1

1−
(

n̄
n̄+1

)M+1

1(
1 + 1

n̄ |z|2
)M+2

≡ P (M ;0)
(
|z|2
)
.

(137)
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Then the harmonic limit becomes

lim
HO

P (M ;0)
(
|z|2
)

=
1

n̄
lim
HO

1

1−
(

n̄
n̄+1

)M+1
lim
HO

1(
1 + 1

n̄ |z|2
)M+2

=
1

n̄
lim
HO

1(
1 +

1
n̄
M |z|2
M

)M+2
=

1

n̄
lim
HO

1(
1 +

1
n̄
|α|2
M

)M+2

=
1

n̄
lim
HO

1(
1 +

1
n̄
|α|2
M

)M+2
=

1

n̄
e−

1
n̄
|α|2 ≡ P (HO−1D)

(
|z|2
)
. (138)

The harmonic limit for the thermal analogue of the Mandel parameter can be calculated
by using the property of the limit operation:

lim
M→∞

Q(M ;0) = Y
d

dY

[
ln

(
d

dY
ln lim

M→∞
SM (Y )

)]
, (139)

and having in mind that Y < 1, we obtain

lim
M→∞

SM (Y ) = lim
M→∞

Y M+1 − 1

Y − 1
=

1

1− Y
. (140)

So, finally, we obtain [2]

lim
M→∞

Q(M ;0) ≡ Q(∞;0) = n̄ = QHO−1D, (141)

i.e., just the thermal analogue of the Mandel parameter for the HO-1D.

VIII. CONCLUSIONS

In this paper we have examined some properties of the ordinary and excited binomial
states (BSs, respectively, EBSs), the later have been built by the repeated action of the
lowering operator on the BSs. Although the definition of the usual version of the binomial
states should not specify an orthogonal Fock-vector base, when we calculate the expectation
values, there are determined from this basis. In this context we have paid our attention to
the pseudoharmonic oscillator (PHO) basis, i.e., we have built the binomial states (BSs)
for this oscillator using their Fock-vector basis |n; k⟩.

Even if in the scientific literature ([1, 3]) it is specified that the BCs tend to the
coherent states (CSs) at the harmonic limit, i.e., when M → ∞, |z|2 → 0, but so that
M |z|2 = |α|2 (finite number), we have demonstrated that the ordinary (BSs) and also the
excited binomial states (EBSs) have all the properties required of coherent states for the
entire range of the complex variable, and so, the binomial states (ordinary and excited)
belong to the family of coherent states. We consider this as the main result of the present
paper, which has not yet appeared in the literature. Moreover, the BSs and EBSs have



766 STATISTICAL PROPERTIES OF THE EXCITED . . . VOL. 52

a sub-Poissonian behavior for small values of the argument |z|2, respectively, for small
extreme equilibrium temperatures (in the case of thermal states). So, we have shown that
not only the non-excited binomial states (as stated in [1]), but also the excited binomial
states are also sub-Poissonian.

We have also calculated different functions which characterize the two kind of bino-
mial states (BSs and EBSs): the Q- and P - distribution functions, the Mandel parameter,
and also the thermal analogue of the Mandel parameter. All these functions lead to the
corresponding functions of the HO-1D, at the harmonic limit. This constitutes additional
evidence for the obtained results. Moreover, the mathematical structure of these functions
is similar to the structure of the corresponding functions for the CSs for the PHO and the
photon added CSs for the PHO [8].

In all the calculations we have used Meijer’s G-function formalism because of its sim-
plicity and effectiveness in such kinds of problems [7]. Thereby implicitly the applicability
area of these functions was expanded.

In conclusion, we consider that the present paper will be a small step in studying the
properties both of excited binomial states and also in the properties of a pseudoharmonic
oscillator. In this context a recent paper is of interest (where the pseudoharmonic oscillator
appears with the name isotonic oscillator) [16].

APPENDIX A: SOME USEFUL PROPERTIES OF MEIJER’S G-
FUNCTIONS AND HYPERGEOMETRIC FUNCTIONS [5, 17]:

If we use the notations: {ap} ≡ a1, a2, . . . , an; an+1, an+2, . . . , ap and {bq} ≡
b1, b2, . . . , bm; bm+1, bµ+m, . . . , bq then we point out the following properties of Meijer’s G-
functions:

- Reduction of order

Gm,n+1
p+1,q+1

(
X

∣∣∣∣ c, {ap}{bq}, c

)
= Gm+1,n

p+1,q+1

(
X

∣∣∣∣ {ap}, c
c, {bq}

)
= Gmn

pq

(
X

∣∣∣∣ {ap}{bq}

)
. (A1)

- Symmetry and coefficient changes

Gmn
pq

(
X

∣∣∣∣ {ap}{bq}

)
= Gnm

qp

(
1

X

∣∣∣∣ {1− bq}
{1− ap}

)
; zσGmn

pq

(
X

∣∣∣∣ {ap}{bq}

)
= Gnm

qp

(
X

∣∣∣∣ {ap + σ}
{bq + σ}

)
.

(A2)

- Differentiation

Xj dj

dXj
Gmn

pq

(
X

∣∣∣∣ {ap}{bq}

)
= Gm,n+1

p+1,q+1

(
X

∣∣∣∣ 0, {ap}
{bq}, j

)
. (A3)
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- Classical Meijer’s integral from two G functions

∞∫
0

dττα−1Gs,l
u,v

(
τw

∣∣∣∣ c1, . . . , cl; cl+1, . . . , cu
d1, . . . , ds; ds+1, . . . , dv

)
Gm,n

p,q

(
τz

∣∣∣∣ a1, . . . , an; an+1, . . . , ap
b1, . . . , bm; bm+1, . . . , bq

)

=
1

wα
·Gm+l,n+s

v+p,u+q(
z

w

∣∣∣∣ a1, . . . , an, 1− α− d1, . . . , 1− α− ds; 1− α− ds+1, . . . , 1− α− dv; an+1, . . . , ap
b1, . . . , bm, 1− α− c1, . . . , 1− α− cl; 1− α− cl+1, . . . , 1− α− cu; bm+1, . . . , bq

)
.

(A4)

- Limit operation

lim
c→∞

1

Γ(1− c)
Gm,n+1

p+1,q

(
−X

c

∣∣∣∣ c, {ap}{bq}

)
= Gm,n

p,q

(
X

∣∣∣∣ {ap}{bq}

)
. (A5)

- Relation between Meijer’s G-functions and hypergeometric functions:

pFq({ap}; {bq};X) =

∏p
j=1 Γ(bj)∏q
i=1 Γ(ai)

G1,p
p,q+1

(
−X

∣∣∣∣ ; {1− ap}
0; {1− bq}

)
. (A6)

- Some particular values

G11
11

(
X

∣∣∣∣ ab
)

= Γ(1− a+ b)Xb(1 +X)a−b−1, (A7)

G22
22

(
X

∣∣∣∣ 1− a, 1− b;
0, c− a− b;

)
=

Γ(a)Γ(b)Γ(c− a)Γ(c− b)

Γ(c) 2

F1 (a, b; c; 1−X) . (A8)

- Gauss hypergeometric function

2F1 (a, b; b+ 1;X) = bX−bBX(b, 1− a), (A9)

2F1 (1, b; c;X) = (c− 1)X1−c(1−X)−b+c−1BX(c− 1, b− c+ 1). (A10)

- Incomplete beta function

BX(a, d) =

X∫
0

ta−1(1− t)d−1dt. (A11)

-Limit operation

lim
c→∞ p+1Fq

(
c, {ap}; {bq};

X

c

)
=p Fq({ap}; {bq};X). (A12)
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- Jacobi polynomials

G12
22

(
X

∣∣∣∣ a, c;
b; d

)
= Γ(b−a+1)Γ(d−c+1)Xb(X+1)a−b−1P

(−M−1;−j)
j

(
1−X

1 +X

)
, (A13)

P
(a;b)
j (−X) = (−1)jP

(b;a)
j (X), (A14)

P
(a;−j)
j (X) =

1

2j
Γ(a+ j + 1)

Γ(a+ 1)Γ(j + 1)
(X + 1)j . (A15)

APPENDIX B: SOME RELATIONS USED IN THE PRESENT PAPER

If we take m = 0 in the integration measure for EBSs (see Eq. (45)), we obtain
successively:

dµ
(M)
0 (z; k)

=
1

Γ(M + 1)

1

Γ(−M)

dφ

2π
d(|z|2) 1

(1− |z|2)2
· Γ(M + 2)

1

(1− |z|2)M
Γ(−M)

(
1− |z|2

)M+2

= (M + 1)
dφ

2π
d(|z|2). (B1)

The general integral I
(M)
j (X) from Eq. (98) is

I
(M)
j (n̄)

≡
∞∫
0

dXG13
33

(
X

∣∣∣∣M + 1, −m, 1− 2k −m;
0; 1− 2k, j

)
G31

33

(
1

Y
X

∣∣∣∣ −M − 1; m, 2k − 1 +m
0, 0, 2k − 1;

)

= G62
66

(
1

Y

∣∣∣∣ 0, −M − 1; m, 2k − 1 +m, 2k − 1, −j
−M − 1, m, 2k − 1 +m, 0, 0, 2k − 1;

)
= G32

33

(
1

Y

∣∣∣∣ 0, −M − 1; −j
0, −M − 1, 0;

)
= G23

33

(
Y

∣∣∣∣ 1, M + 2, 1;
1, M + 2; 1 + j

)
=

1

Y
G23

33

(
Y

∣∣∣∣ 0, M + 1, 0;
0, M + 1, j

)
=

1

Y
Y j

(
d

dY

)j

G22
22

(
Y

∣∣∣∣M + 1, 0;
0, M + 1;

)
= Γ(M + 2)Γ(−M)

1

Y
Y j

(
d

dY

)j

2F1

(
1,M + 2; 2;− 1

n̄

)
= Γ(M + 2)Γ(−M)

1

Y
Y j

(
d

dY

)j [ 1

1− Y
B1−Y (1,M + 1)

]
= Γ(M + 2)Γ(−M)

1

Y
Y j

(
d

dY

)j [Y M+1 − 1

Y − 1

]
. (B2)
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For j = 0 the general integral becomes

I
(M)
0 (n̄) = G32

33

(
1

Y

∣∣∣∣ 0, −M − 1; −j
0, −M − 1, 0;

)
= G22

22

(
1

Y

∣∣∣∣ 0, −M − 1;
0, −M − 1;

)
= Γ(M + 2)Γ(−M)2F1

(
1,M + 2; 2;− 1

n̄

)
=

n̄

M + 1

[
1−

(
n̄

n̄+ 1

)M+1
]
. (B3)
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